Bioinorganic Chemistry and Applications
 Journal metrics
See full report
Acceptance rate32%
Submission to final decision65 days
Acceptance to publication26 days
CiteScore9.600
Journal Citation Indicator1.050
Impact Factor4.724

Optimization of Precious Metals Recovery from Electronic Waste by Chromobacterium violaceum Using Response Surface Methodology (RSM)

Read the full article

 Journal profile

Bioinorganic Chemistry and Applications publishes research in all aspects of bioinorganic chemistry, including bioorganometallic chemistry and applied bioinorganic chemistry, and applications in fields such as medicine and immunology.

 Editor spotlight

Chief Editor, Professor Fanizzi, is based at the Università del Salento. His research interests and current projects are related to the study of transition metals (Platinum in particular), coordination organometallic and bioinorganic chemistry, and the applications of high field NMR Spectroscopy.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Grass-Shaped Zinc Oxide Nanoparticles Synthesized by the Sol-Gel Process and Their Antagonistic Properties towards the Biotrophic Parasite, Meloidogyne incognita

The presence of Meloidogyne spp., also known as root-knot nematodes, presents a significant danger to global agricultural progress. Since chemical nematicides have high levels of toxicity, it is imperative to develop environmentally friendly methods to manage root-knot nematodes. Nanotechnology is now the most progressive way to attract researchers due to its innovative quality in combating plant diseases. Our study focused on the sol-gel process to synthesize grass-shaped zinc oxide nanoparticles (G-ZnO NPs) and assess its nematicidal behavior against Meloidogyne incognita. Various concentrations (250, 500, 750, and 1000 ppm) of G-ZnO NPs were utilized to expose both the infectious stage (J2s) and egg masses of M. incognita. Laboratory results revealed that G-ZnO NPs showed toxicity to J2s with LC50 values of 1352.96, 969.64, and 621.53 ppm at 12, 24, and 36 hours, respectively, and the result was the inhibition of egg hatching in M. incognita. All three exposure periods were reported linked with the concentration strength of G-ZnO NPs. The pot experiment results exhibited that G-ZnO NPs significantly reduced the root-gall infection of chickpea plants under M. incognita attack. Compared with the untreated control, there was a significant improvement in plant growth attributes and physiological parameters as well, when distinct G-ZnO NP doses (250, 500, 750, and 1000 ppm) were applied. In the pot study, we noticed a reduction in the root-gall index with an increase in the concentration of G-ZnO NPs. The results confirmed that G-ZnO NPs have enormous potential in sustainable agriculture for controlling the root-knot nematode, M. incognita, in chickpea production.

Research Article

Modified Activated Carbon: A Supporting Material for Improving Clostridium beijerinckii TISTR1461 Immobilized Fermentation

This study aimed to investigate the effect of activated carbon (AC) as an immobilization material in acetone-butanol-ethanol fermentation. The AC surface was modified with different physical (orbital shaking and refluxing) and chemical (nitric acid, sodium hydroxide and, (3-aminopropyl)triethoxysilane (APTES)) treatments to enhance the biobutanol production by Clostridium beijerinckii TISTR1461. The effect of surface modification on AC was evaluated using Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, surface area analyses, and X-ray photoelectron spectroscopy, while the fermented broth was examined by high-performance liquid chromatography. The chemical functionalization significantly modified the physicochemical properties of the different treated ACs and further enhanced the butanol production. The AC treated with APTES under refluxing provided the best fermentation results at 10.93 g/L of butanol, 0.23 g/g of yield, and 0.15 g/L/h of productivity, which were 1.8-, 1.5-, and 3.0-fold higher, respectively, than that in the free-cell fermentation. The obtained dried cell biomass also revealed that the treatment improved the AC surface for cell immobilization. This study demonstrated and emphasized the importance of surface properties to cell immobilization.

Research Article

Biomolecule Protective and Photocatalytic Potential of Cellulose Supported MoS2/GO Nanocomposite

In the current study, cellulose/MoS2/GO nanocomposite has been synthesized by a hydrothermal method. Reports published regarding efficiency of Mo and graphene oxide-based nanocomposites for environmental remediation motivated to synthesize cellulose supported MoS2/GO nanocomposite. Formation of nanocomposite was initially confirmed by UV-visible and FTIR spectroscopic techniques. Particle size and morphology of the nanocomposite were assessed by scanning electron microscopy (SEM), and it was found having particle size ranging from 50 to 80 nm and heterogeneous structure. The XRD analysis also confirmed the structure of the nanocomposite having cellulose, MoS2, and GO. The synthesized nanocomposite was further tested for biomolecule protective potential employing different radical scavenging assays. Results of radical DPPH (50%) and ABTS●+ (51%) scavenging studies indicate that nanocomposites can be used as a biomolecule protective agent. In addition, nanocomposite was also evaluated for photocatalytic potential, and the results showed excellent photocatalytic properties for the degradation of 4-nitrophenol up to 75% and methylene blue and methyl orange up to 85% and 70%, respectively. So, this study confirmed that cellulose supported/stabilized MoS2/GO nanocomposite can be synthesized by an ecofriendly, cost-effective, and easy hydrothermal method having promising biomolecule protective and photocatalytic potential.

Research Article

Enhanced Peroxidase-Like and Antibacterial Activity of Ir-CoatedPd-Pt Nanodendrites as Nanozyme

To inhibit the growth of bacteria, the DA-PPI nanozyme with enhanced peroxidase-like activity was synthesized. The DA-PPI nanozyme was obtained by depositing high-affinity element iridium (Ir) on the surface of Pd-Pt dendritic structures. The morphology and composition of DA-PPI nanozyme were characterized using SEM, TEM, and XPS. The kinetic results showed that the DA-PPI nanozyme possessed a higher peroxidase-like activity than that of Pd-Pt dendritic structures. The PL, ESR, and DFT were employed to explain the high peroxidase activity. As a proof of concept, the DA-PPI nanozyme could effectively inhibit E. coli (G) and S. aureus (G+) due to its high peroxidase-like activity. The study provides a new idea for the design of high active nanozymes and their application in the field of antibacterial.

Research Article

Assessment of Structural, Optical, and Antibacterial Properties of Green Sn(Fe : Ni)O2 Nanoparticles Synthesized Using Azadirachta indica Leaf Extract

Metal oxide nanoparticles have attained notable recognition due to their interesting physicochemical properties. Although these nanoparticles can be synthesized using a variety of approaches, the biological method involving plant extracts is preferred since it provides a simple, uncomplicated, ecologically friendly, efficient, rapid, and economical way for synthesis. In this study, the Azadirachta indica leaf extract was used as a reducing agent, and a green process was used to synthesize tin(ferrous: nickel)dioxide (Sn(Fe : Ni)O2) nanoparticles. The synthesized nanoparticles were subjected to characterization by using X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy analysis, field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and photoluminescence (PL) measurement. Furthermore, Sn(Fe : Ni)O2 nanoparticles were analyzed for their antimicrobial activity against Gram-positive and Gram-negative organisms including Staphylococcus aureus, Streptococcus pneumoniae, Bacillus subtilis, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa bacterial strains. XRD patterns revealed that Sn(Fe : Ni)O2 nanoparticles exhibited a tetragonal structure. The hydrodynamic diameter of the nanoparticles was 143 nm, as confirmed by the DLS spectrum. The FESEM image showed the spherical form of the synthesized nanoparticles. Chemical composites and mapping analyses were performed through the EDAX spectrum. The Sn–O–Sn and Sn–O stretching bands were 615 cm−1 and 550 cm−1 in the FTIR spectrum, respectively. Various surface defects of the synthesized Sn(Fe : Ni)O2 nanoparticles were identified by photoluminescence spectra. Compared to traditional antibiotics like amoxicillin, the inhibition zone revealed that Sn(Fe : Ni)O2 nanoparticles displayed remarkable antibacterial activity against all tested organisms, indicating the valuable potential of nanoparticles in the healthcare industry.

Research Article

Hybrid MWCNT and TiO2 Nanoparticle-Suspended Waste Tyre Oil Biodiesel for CI Engines

Nowadays, scarcity arises in almost all our basic needs, including water, fuel, and food. Recycling used and scrapped things for a valuable commodity is highly appreciable for compensating for the globally fast-growing demand. This paper aims to investigate waste tyre oil for preparing biodiesel for CI engines by enhancing their performance with hybrid nanoparticles for preparing nanofuel and hybrid nanofuel. The nanoparticles (30–40 nm) of MWCNT and TiO2 were utilized to prepare nanofuels with nanoparticle concentrations of MWCNT (300 ppm) and TiO2 (300 ppm), respectively. In the case of hybrid nanofuel, the nanoparticle concentration of MWCNT (150 ppm) and TiO2 (150 ppm) was preferred. The performance of the proposed nanofuel and hybrid nanofuel with pure diesel was evaluated. The proposed fuel performance outperforms the combustion performance, has higher engine efficiency, and has fewer emissions. The best performances were noticed in hybrid nanofuel that has 32% higher brake thermal efficiency than diesel and 24% and 4% lower BSFC and peak pressure than diesel, respectively. The emission performance is also 29%, 50%, and 13% lower in CO, HC, and CO2 emissions than that in pure diesel.

Bioinorganic Chemistry and Applications
 Journal metrics
See full report
Acceptance rate32%
Submission to final decision65 days
Acceptance to publication26 days
CiteScore9.600
Journal Citation Indicator1.050
Impact Factor4.724
 Submit

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.