International Journal of Optics
 Journal metrics
See full report
Acceptance rate28%
Submission to final decision87 days
Acceptance to publication24 days
CiteScore1.700
Journal Citation Indicator0.280
Impact Factor1.072

Design and Theoretical Analysis of Highly Negative Dispersion-Compensating Photonic Crystal Fibers with Multiple Zero-Dispersion Wavelengths

Read the full article

 Journal profile

International Journal of Optics publishes both fundamental and highly applied studies on the nature of light, its properties and behaviours, and its interaction with matter.

 Editor spotlight

Chief Editor, Professor Cerullo, leads the Ultrafast Spectroscopy group at the Department of Physics at the Polytechnic University of Milan. His research activity has mainly focused on the physics and applications of ultrashort pulse lasers.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Research on the Seed Respiration CO2 Detection System Based on TDLAS Technology

The traditional detection method of CO2 concentration in seed respiration has defects such as low detection accuracy, low detection efficiency, and inability to monitor in real time. In order to solve these problems, we report a seed respiration CO2 detection system based on wavelength modulation spectroscopy (WMS) techniques in tunable diode laser absorption spectroscopy (TDLAS). This system uses a 2004 nm distributed feedback (DFB) laser as the light source, and a double-layer seed respiration device (about 1.5 L) is designed based on Herriott cell with an effective optical path of about 21 meters. Then, the second harmonic (2f) signal is extracted by the wavelength modulation method for CO2 concentration inversion. When the ambient temperature and pressure changes greatly, the corrected 2f signal is used for CO2 concentration inversion to improve the accuracy. A series of verification and comparison experiments have proved that the seed respiration CO2 detection system has the advantages of strong stability, high sampling frequency, and high detection accuracy. Finally, we used the developed system to measure the respiration intensity and respiration rate of 1 g corn seeds. The respiration intensity curves and respiration rate change details show that the seed respiration CO2 detection system is more suitable for a small amount of seeds than nondispersive infrared (NDIR) CO2 sensor and gas chromatography in real-time monitoring of the breathing process.

Research Article

Frequency Scanning Multibeamforming Method Based on CFBG Photonic Microwave Oscillation

In this paper, a two-loop photoelectric oscillator based on chirped fiber Bragg grating (CFBG) is used to construct a swept source, which acts on the frequency scanning array antenna to realise multibeamforming. The simulation results of the designed beamforming system have shown that it can realise wide-range beam scanning and has ultralow phase noise.

Research Article

The Optimization of Multimode Fiber Speckle Sensor for Microvibration

A vibration sensing system with optical fiber speckles is demonstrated and optimized with different optical fiber diameters and speckle statistical algorithms. The types of fiber diameter and material lead to a different performance of fiber specklegram sensor (FSS), which has been experimentally explored. The signal intensity, demodulated from the speckles, is different when using multimode fibers with different diameters. At the same time, the sensing effect of different fibers depends on the speckle statistical algorithms. Accordingly, we use different statistical methods in theory and experiment to analyze the influence of fiber diameter and speckle statistical methods on the sensing performance. A vibration sensing system with optimized performance is achieved by the optimized types of optical fiber and the corresponding optimized algorithms, which are promising for sensing weak vibration, such as detecting.

Review Article

Factors Affecting Terahertz Emission from InGaN Quantum Wells under Ultrafast Excitation

InGaN quantum wells (QWs) grown on c-plane sapphire substrate experience strain due to the lattice mismatch. The strain generates a strong piezoelectric field in QWs that contributes to THz emission under ultrafast excitation. Physical parameters such as QW width, period number, and Indium concentration can affect the strength of the piezoelectric field and result in THz emission. Experimental parameters such as pump fluence, laser energy, excitation power, pump polarization angle, and incident angle can be tuned to further optimize the THz emission. This review summarizes the effects of physical and experimental parameters of THz emission on InGaN QWs. Comparison and relationship between photoluminescence properties and THz emission in QWs are given, which further explains the origin of THz emission in InGaN QWs.

Research Article

AI-Assisted Failure Location Platform for Optical Network

In the paper, we applied the customized AI module to the OTDR device and, combined with the optical power monitoring module, realized the AI-assisted optical network fault location mechanism for the high-density interconnection scenario of data centers. The mechanism can make full use of the data from optical links. Based on the link data, the AI module can predict the links that may fail, and then the target links will be monitored by the optical power module. The mechanism can quickly locate and respond to faulty links. Through the test, the introduction of an AI model can improve the average fault detection efficiency of the link by 98.41%.

Research Article

Integrated Free-Space Optics and Fiber Optic Network Performance Enhancement for Sustaining 5G High Capacity Communications

In this paper, the integrated free-space optics (FSO) and fiber optic model is evaluated using new radio (NR) sub-THz link to sustain next generation 5G capacity. The proposed integrated model effectively applies over 25 km single mode fiber, 0.5 m RF wireless, and 500 m optical wireless. In addition, four different sub-THz frequencies (125, 150, 175, and 200 GHz) are estimated on NR-based 5G FSO network, including 22 Gbps 64quadrature amplitude modulation-orthogonal frequency division multiplexing (64QAM-OFDM) signal speed. The proposed FSO enabled fiber optic system is also measured mathematically to satisfy the data transmission accuracy. For confirmation, the theoretical approach of the presented FSO and fiber optic network is realized with an aggregate 342 Gbps speed . The performance metrics comprising forward error limit (FEL), bit error rate (BER), and error vector magnitude (EVM) are used for weighing simulation results. The outlets of an integrated fiber-FSO network show that by applying NR 5G sub-THz, a high data rate with multiple inputs and multiple outputs (MIMO) transmission capacity can be adjusted victoriously.

International Journal of Optics
 Journal metrics
See full report
Acceptance rate28%
Submission to final decision87 days
Acceptance to publication24 days
CiteScore1.700
Journal Citation Indicator0.280
Impact Factor1.072
 Submit

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.