International Journal of Electrochemistry
 Journal metrics

Metrics will be available once more articles are published.

Enabling the Electrochemical Performance of Maricite-NaMnPO4 and Maricite-NaFePO4 Cathode Materials in Sodium-Ion Batteries

Read the full article

 Journal profile

International Journal of Electrochemistry publishes research on all aspects of electrochemistry including fundamental electrochemical processes, new electrochemical techniques and the applications of electrochemistry in analytical determination.

 Editor spotlight

Professor Kenneth Ozoemena, the journal’s Chief Editor, is based at the University of the Witwatersrand in South Africa. His current research activities include materials synthesis and characterisation, electroanalytical chemistry, electrocatalysis and electrochemical energy conversion and storage.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Electrooxidation and Development of a Highly Sensitive Electrochemical Probe for Trace Determination of the Steroid 11-Desoxycorticosterone Drug Residues in Water

Anabolic-androgenic steroids (AASs), a class of compounds frequently misused by competitors and unfortunately by the general population, have lately attracted international attention. Thus, extraordinary demands for developing low cost, precise, rapid, and facile protocols for detection and/or determination of AAS have arisen. Hence, the current strategy explores for the first time the redox features of 21-hydroxypregn-4-ene-3, 20-dione, namely, 11-desoxycorticosterone (DCS) AA drug steroid at a glassy-carbon electrode (GCE) in a wide pH range (pH 2.0–10.0) by adsorptive differential pulse-anodic stripping voltammetry (DP- ASV) and cyclic voltammetry (CV). At pH 2, DP-ASV and CV at the optimized pH 2–3 displayed an irreversible anodic peak at 0.4 V versus Ag/AgCl electrode. The dependency of the anodic peak current of the CV at 0.4 V at various concentrations and scan rate of the DCS drug was characteristic of an electrode-coupled electron transfer of EE type mechanism. At the optimized parameters, the proposed strategy allowed quantification of DCS in the concentration range 2.5 -13.19 nM (0.83-4.36 ng mL−1) with satisfactory limits of detection (LOD) and quantization (LOQ) of 9.3 × 10−1 nM (3.1 × 10−1 ng mL−1) and 3.1 nM (1.02 ng mL−1), respectively. A relative standard deviation (RSD) of ±3.93% (n = 5) at 4.0 ng mL−1 DCS was achieved. The established probe was fruitfully employed and validated for trace determination of DCS residues in environmental water. The interference of several common diverse species on DCS sensing was insignificant revealing good selectivity. The established probe exhibited good sensitivity, selectivity, precision, and accuracy, short analytical time, and low cost compared with the reported methods, for DCS determination.

Research Article

A Highly Sensitive Electrochemical Sensor Based on Electrocatalytic Reduction Effect of Cu2+ on Trace Determination of Malathion in Soil and Other Complex Matrices

The current strategy reports a highly sensitive and selective square wave-cathodic stripping voltammetric protocol for malathion determination. The established method was based on the controlled adsorptive accumulation of malathion in the presence of Cu2+ ions in an aqueous solution of pH 2 onto the hanging mercury dropping electrode (HMDE) and measuring the resulting cathodic peak current of the adsorbed species at −0.42 V versus Ag/AgCl electrode. The low limits of detection (LOD) and quantification (LOQ) of malathion of the assay were estimated to be 3.1 × 10−10 and 1.03 × 10−9 M with a linear dynamic range of 1.03×10−9 – 2.0 × 10−7 M, respectively. The method was satisfactorily applied and validated for malathion determination in environmental samples. The experimental Student texp and Fexp values did not exceed the tabulated ttab (2.78) and Ftab (6.39) at 95% (P = 0.05) confidence (n = 5), confirming the precision and independence on the matrix. The developed sensing platform for the detection of malathion shows superior performance to conventional electrochemical methods. The proposed sensor offered simple, economical, reproducible, and applicable approach for the determination of malathion in environmental samples.

Research Article

Detection of Selenium and Nickel Metal Ion in Water Using Mn3O4-Cn-Modified Electrode

The present study reports the design of the Mn3O4-Cn electrode and its use for simultaneous detection of selenium and nickel in water. The designed electrode can be used as a convenient electrochemical device for on-site testing of Se (IV) and Ni (II) levels in affected regions. The best responses are obtained with 0.1 M phosphate buffer saline (PBS) and 5 mM Fe (CN)6 as supporting electrolyte. The scan rate and the number of cyclic repetitions have a great effect on peak shape and intensity. It is seen from our study that peak intensity is directly proportional to Se (IV) and Ni (II) concentrations in the range of 5 to 250 µg/L (correlation coefficients 0.952 and 0.984) when the optimized parameters are used. The detection limit of 0.533 µg/L Se (IV) and 0.718 µg/L for Ni (VI) with a response time of 18 s for 5–250 µg/L concentration is obtained, respectively. Enhanced analytical results for different water samples establish that the proposed method is appropriate for Se (IV) and Ni (II) detection. FESEM images confirm the Mn3O4-Cn nanocomposite formation on the electrode.

Research Article

Electrodeposited Benzothiazole Phthalocyanines for Corrosion Inhibition of Aluminium in Acidic Medium

Tetrakis[(benzo[d]thiazol-2-yl-thio) phthalocyaninato] gallium(III)chloride (1) and tetrakis[(benzo[d]thiazol-2ylphenoxy) phthalocyaninato] gallium(III)chloride (2) were successfully electrodeposited onto aluminium for corrosion retardation in 1.0 M hydrochloric acid solution. The aim of this study was to compare the corrosion resistance of electrodeposited metallated phthalocyanines. Scanning electron microscopy, X-ray diffraction, electrochemical impedance spectroscopy (EIS), and polarization confirmed the aluminium corrosion inhibition potentials of complexes 1 and 2. EIS and polarization techniques showed that complex 2 performed better than complex 1, with values from EIS measurements of 82% for 1 and 86% for 2 in 1.0 M hydrochloric acid solution. The importance of electrodeposition in industries and a dearth of research on the use of electrodeposited metallated phthalocyanines necessitated this study, and results show that coatings formed by electrodeposition of 1 and 2 onto aluminium reduced its susceptibility to corrosion attack.

Research Article

Synthesis, Electrochemical, Thermodynamic, and Quantum Chemical Investigations of Amino Cadalene as a Corrosion Inhibitor for Stainless Steel Type 321 in Sulfuric Acid 1M

The corrosion of stainless steel is one of the major industries’ issues that gained wide interest among researchers. It became necessary to develop and apply eco-friendly approaches to corrosion control. This work explores the inhibitory effect of a newly synthesized amino cadalene (ACM) on the corrosion of stainless steel type 321 in sulfuric acid 1M. Particularly, the experimental study consisting of electrochemical and surface analyses was conducted in conjunction with a theoretical approach. The electrochemical results showed that ACM acted as a mixed-type corrosion inhibitor and the inhibition efficiency attained 91% at 10−3M. EIS measurements revealed that both metal charge transfer and diffusion processes are involved in the interfacial metal/solution reactions. The interfacial mechanism is thoroughly investigated; the physisorption of the protonated molecules was preceded by the formation of a negative layer due to adsorption of the solution anionic species. The experimental insights are corroborated with the quantum chemical calculations.

Research Article

Electrochemical Reduction of Oxygen and Nitric Oxide on Mn-Based Perovskites with Different A-Site Cations

Four LnMnO3+δ (Ln = La, Pr, Sm, and Gd) perovskites were synthesized and characterized by powder XRD. It was shown that the perovskite lattice became more and more distorted when lowering the size of the A-site cation. The manganite-based perovskites were evaluated for the ability to electrochemically reduce oxygen and nitric oxide in the temperature range of 200 to 400°C. At the lowest temperature, the electrodes were better at reducing nitric oxide than oxygen. At higher temperatures, the activity for the reduction of oxygen and nitric oxide became similar. The activation energies for the reduction of oxygen and nitric oxide were markedly different for LaMnO3+δ and PrMnO3+δ whereas it was similar for SmMnO3+δ and GdMnO3+δ.

International Journal of Electrochemistry
 Journal metrics

Metrics will be available once more articles are published.

 Submit

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.